Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium.

Identifieur interne : 000777 ( Main/Exploration ); précédent : 000776; suivant : 000778

Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium.

Auteurs : Jianxiong Li [États-Unis] ; Alexander Krichevsky ; Manjusha Vaidya ; Tzvi Tzfira ; Vitaly Citovsky

Source :

RBID : pubmed:15824315

Descripteurs français

English descriptors

Abstract

Agrobacterium-mediated genetic transformation of plants, a unique example of transkingdom DNA transfer, requires the presence of several proteins encoded by the host cell. One such cellular factor is VIP1, an Arabidopsis protein proposed to interact with and facilitate import of the bacterial DNA-protein transport (T) complexes into the plant cell nucleus. Thus, VIP1 is required for transient expression of the bacterial DNA, an early step in the transformation process. However, the role of VIP1 in subsequent transformation events leading to the stable expression of bacterial DNA was unexplored. Here, we used reverse genetics to dissect VIP1 functionally and demonstrate its involvement in the stable genetic transformation of Arabidopsis plants by Agrobacterium. Our data indicate that the ability of VIP1 to interact with the VirE2 protein component of the T-complex and localize to the cell nucleus is sufficient for transient genetic transformation, whereas its ability to form homomultimers and interact with the host cell H2A histone in planta is required for tumorigenesis and, by implication, stable genetic transformation.

DOI: 10.1073/pnas.0404118102
PubMed: 15824315
PubMed Central: PMC556277


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium.</title>
<author>
<name sortKey="Li, Jianxiong" sort="Li, Jianxiong" uniqKey="Li J" first="Jianxiong" last="Li">Jianxiong Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krichevsky, Alexander" sort="Krichevsky, Alexander" uniqKey="Krichevsky A" first="Alexander" last="Krichevsky">Alexander Krichevsky</name>
</author>
<author>
<name sortKey="Vaidya, Manjusha" sort="Vaidya, Manjusha" uniqKey="Vaidya M" first="Manjusha" last="Vaidya">Manjusha Vaidya</name>
</author>
<author>
<name sortKey="Tzfira, Tzvi" sort="Tzfira, Tzvi" uniqKey="Tzfira T" first="Tzvi" last="Tzfira">Tzvi Tzfira</name>
</author>
<author>
<name sortKey="Citovsky, Vitaly" sort="Citovsky, Vitaly" uniqKey="Citovsky V" first="Vitaly" last="Citovsky">Vitaly Citovsky</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15824315</idno>
<idno type="pmid">15824315</idno>
<idno type="doi">10.1073/pnas.0404118102</idno>
<idno type="pmc">PMC556277</idno>
<idno type="wicri:Area/Main/Corpus">000793</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000793</idno>
<idno type="wicri:Area/Main/Curation">000793</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000793</idno>
<idno type="wicri:Area/Main/Exploration">000793</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium.</title>
<author>
<name sortKey="Li, Jianxiong" sort="Li, Jianxiong" uniqKey="Li J" first="Jianxiong" last="Li">Jianxiong Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krichevsky, Alexander" sort="Krichevsky, Alexander" uniqKey="Krichevsky A" first="Alexander" last="Krichevsky">Alexander Krichevsky</name>
</author>
<author>
<name sortKey="Vaidya, Manjusha" sort="Vaidya, Manjusha" uniqKey="Vaidya M" first="Manjusha" last="Vaidya">Manjusha Vaidya</name>
</author>
<author>
<name sortKey="Tzfira, Tzvi" sort="Tzfira, Tzvi" uniqKey="Tzfira T" first="Tzvi" last="Tzfira">Tzvi Tzfira</name>
</author>
<author>
<name sortKey="Citovsky, Vitaly" sort="Citovsky, Vitaly" uniqKey="Citovsky V" first="Vitaly" last="Citovsky">Vitaly Citovsky</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active Transport, Cell Nucleus (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (chemistry)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Base Sequence (MeSH)</term>
<term>Cell Nucleus (metabolism)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Ion Channels (genetics)</term>
<term>Ion Channels (metabolism)</term>
<term>Luminescent Proteins (genetics)</term>
<term>Luminescent Proteins (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multiprotein Complexes (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Protein Structure, Quaternary (MeSH)</term>
<term>Rhizobium (genetics)</term>
<term>Rhizobium (metabolism)</term>
<term>Transformation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Canaux ioniques (génétique)</term>
<term>Canaux ioniques (métabolisme)</term>
<term>Complexes multiprotéiques (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines d'Arabidopsis (composition chimique)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines luminescentes (génétique)</term>
<term>Protéines luminescentes (métabolisme)</term>
<term>Rhizobium (génétique)</term>
<term>Rhizobium (métabolisme)</term>
<term>Structure quaternaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Transport nucléaire actif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Bacterial Proteins</term>
<term>DNA-Binding Proteins</term>
<term>Ion Channels</term>
<term>Luminescent Proteins</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Canaux ioniques</term>
<term>Protéines bactériennes</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines luminescentes</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Bacterial Proteins</term>
<term>Cell Nucleus</term>
<term>DNA-Binding Proteins</term>
<term>Ion Channels</term>
<term>Luminescent Proteins</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Canaux ioniques</term>
<term>Noyau de la cellule</term>
<term>Protéines bactériennes</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines luminescentes</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Active Transport, Cell Nucleus</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Genetic Complementation Test</term>
<term>Molecular Sequence Data</term>
<term>Multiprotein Complexes</term>
<term>Phenotype</term>
<term>Protein Structure, Quaternary</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Complexes multiprotéiques</term>
<term>Données de séquences moléculaires</term>
<term>Phénotype</term>
<term>Structure quaternaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Test de complémentation</term>
<term>Transformation génétique</term>
<term>Transport nucléaire actif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Agrobacterium-mediated genetic transformation of plants, a unique example of transkingdom DNA transfer, requires the presence of several proteins encoded by the host cell. One such cellular factor is VIP1, an Arabidopsis protein proposed to interact with and facilitate import of the bacterial DNA-protein transport (T) complexes into the plant cell nucleus. Thus, VIP1 is required for transient expression of the bacterial DNA, an early step in the transformation process. However, the role of VIP1 in subsequent transformation events leading to the stable expression of bacterial DNA was unexplored. Here, we used reverse genetics to dissect VIP1 functionally and demonstrate its involvement in the stable genetic transformation of Arabidopsis plants by Agrobacterium. Our data indicate that the ability of VIP1 to interact with the VirE2 protein component of the T-complex and localize to the cell nucleus is sufficient for transient genetic transformation, whereas its ability to form homomultimers and interact with the host cell H2A histone in planta is required for tumorigenesis and, by implication, stable genetic transformation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15824315</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>102</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2005</Year>
<Month>Apr</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium.</ArticleTitle>
<Pagination>
<MedlinePgn>5733-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Agrobacterium-mediated genetic transformation of plants, a unique example of transkingdom DNA transfer, requires the presence of several proteins encoded by the host cell. One such cellular factor is VIP1, an Arabidopsis protein proposed to interact with and facilitate import of the bacterial DNA-protein transport (T) complexes into the plant cell nucleus. Thus, VIP1 is required for transient expression of the bacterial DNA, an early step in the transformation process. However, the role of VIP1 in subsequent transformation events leading to the stable expression of bacterial DNA was unexplored. Here, we used reverse genetics to dissect VIP1 functionally and demonstrate its involvement in the stable genetic transformation of Arabidopsis plants by Agrobacterium. Our data indicate that the ability of VIP1 to interact with the VirE2 protein component of the T-complex and localize to the cell nucleus is sufficient for transient genetic transformation, whereas its ability to form homomultimers and interact with the host cell H2A histone in planta is required for tumorigenesis and, by implication, stable genetic transformation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jianxiong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krichevsky</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vaidya</LastName>
<ForeName>Manjusha</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tzfira</LastName>
<ForeName>Tzvi</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Citovsky</LastName>
<ForeName>Vitaly</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007473">Ion Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008164">Luminescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C432104">VIP1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C051583">virE2 protein, Agrobacterium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D021581" MajorTopicYN="N">Active Transport, Cell Nucleus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007473" MajorTopicYN="N">Ion Channels</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008164" MajorTopicYN="N">Luminescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="Y">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15824315</ArticleId>
<ArticleId IdType="pii">0404118102</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0404118102</ArticleId>
<ArticleId IdType="pmc">PMC556277</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2000;328:575-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11075367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Jul 2;20(13):3596-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2002 Feb;32(2):286, 288-90, 292-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11848404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2002 Mar;12(3):121-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11859024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Apr;9(4):789-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11983170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Jul;4(7):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12055637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Sep;50(1):17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12139006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Aug 1;301(5633):653-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Sep;130(18):4351-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12900451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2004 May;230(1):12-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15108305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):25-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29528-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 2;431(7004):87-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15343337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Jul 20;340(6230):190-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2666855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Jan;14(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2101312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1991 Dec;16(12):478-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1664152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jun 26;256(5065):1802-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1615325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Oct;2(10):987-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2136629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Jul;3(7):667-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1841723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Dec;20(6):1071-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1993 Apr;3(2):278-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8504253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2392-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8637884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8643679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1999 Apr;261(3):429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10323222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Jan 26;24(2):428-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2003 Mar;67(1):16-37, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12626681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):948-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11172043</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Citovsky, Vitaly" sort="Citovsky, Vitaly" uniqKey="Citovsky V" first="Vitaly" last="Citovsky">Vitaly Citovsky</name>
<name sortKey="Krichevsky, Alexander" sort="Krichevsky, Alexander" uniqKey="Krichevsky A" first="Alexander" last="Krichevsky">Alexander Krichevsky</name>
<name sortKey="Tzfira, Tzvi" sort="Tzfira, Tzvi" uniqKey="Tzfira T" first="Tzvi" last="Tzfira">Tzvi Tzfira</name>
<name sortKey="Vaidya, Manjusha" sort="Vaidya, Manjusha" uniqKey="Vaidya M" first="Manjusha" last="Vaidya">Manjusha Vaidya</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Li, Jianxiong" sort="Li, Jianxiong" uniqKey="Li J" first="Jianxiong" last="Li">Jianxiong Li</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000777 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000777 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15824315
   |texte=   Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15824315" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024